Oxygen Depletion Calculations

To determine oxygen concentrations after normal evaporative and filling losses, the following calculations can be used.

Step 1: Normal Evaporative Losses

(a)
$$N_E = \frac{2 \times 682 \times (D_N \times D_E)}{24 \times 1000}$$

(b)
$$A_D = \underline{N_E}_{R_v \times R_A}$$

(c)
$$O_D = 0.21 \times 100 \times A_D$$

Where:

- N_E is the nitrogen evaporation rate (in m³h⁻¹).
 - 2 safety factor to allow for the deteriation of the dewar's insulation.
 - 682 expansion factor for liquid nitrogen to gaseous nitrogen.
 - D_N is the number of dewars.
 - D_E is the evaporation rate from the dewar (L/day) (obtained from the supplier of the dewar.
 - A_D is the fractional reduction in the air concentration due to the conversion of liquid nitrogen to gaseous nitrogen.
 - R_v is the volume of the room (m³).
 - R_A is the number of room air changes per hour.

Step 2: Filling Losses

(a)
$$O_v = 0.21 \times [R_v - (0.1 \times D_v \times 682 \times 0.001)]$$

(b)
$$O_{c} = \frac{100 \times O_{v}}{R_{v}}$$

Where:

- O_V is the volume of oxygen in the room (m³).
- D_v is the volume of the dewars (L).
- O_c is the oxygen concentration (%)

Step 3: Total Oxygen Concentration in the Laboratory

 $O_T = O_C - O_D$

Where:

• O_T is the total oxygen concentration in the room (%)

(Adapted from University of Oxford Policy Statement S4/03)

Example 1:

Step 1: Normal Evaporative Losses

(a) $N_E = \frac{2 \times 682 \times (D_N \times D_E)}{24 \times 1000} m^3 h^{-1}$ $N_E = \frac{2 \times 682 \times [(2 \times 0.22) + (1 \times 0.49)]}{24 \times 1000} m^3 h^{-1}$ $N_E = \frac{1364 \times (0.44 + 0.49)}{24000} m^3 h^{-1}$ $N_E = 0.053 m^3 h^{-1}$ (b) $A_D = \frac{N_E}{R_V \times R_A}$ $A_D = \frac{0.053}{108 \times 6}$ $A_D = 0.000082$ (c) $O_D = 0.21 \times 100 \times A_D$

O_D = 0.21 x 100 x 0.000082 %

Step 2: Filling Losses

(a) $O_V = 0.21 \times [R_V - (0.1 \times D_V \times 682 \times 0.001)] \text{ m}^3$

 $O_V = 21.1 \text{ m}^3$

 $O_{D} = 0.0017\%$

(b)
$$O_{C} = \frac{100 \times O_{V}}{R_{V}} \%$$

 $O_{C} = \frac{100 \times 21.1}{108} \%$

O_C = 19.5%

Step 3: Total Oxygen Concentration in the Laboratory

$$O_T = O_C - O_D$$

 $O_T = 19.5 \% - 0.0017\%$
 $O_T = 19.5 \%$

Example 2:

Step 1: Normal Evaporative Losses

(a)
$$N_E = \frac{2 \times 682 \times (D_N \times D_E)}{24 \times 1000} m^3 h^{-1} \frac{24 \times 1000}{24 \times 1000}$$

 $N_E = \frac{2 \times 682 \times [(4 \times 0.22) + (1 \times 1.10)]}{24 \times 1000} m^3 h^{-1} \frac{24 \times 1000}{24000}$
 $N_E = \frac{1364 \times (0.88 + 1.10)}{24000} m^3 h^{-1} \frac{24000}{12000}$
 $N_E = 0.113 m^3 h^{-1}$
(b) $A_D = \frac{N_E}{R_V \times R_A}$
 $A_D = \frac{0.113}{129.6 \times 6}$
 $A_D = 0.000145$
(d) $O_D = 0.21 \times 100 \times A_D$
 $O_D = 0.21 \times 100 \times 0.000145 \%$
 $O_D = 0.003\%$
Step 2: Filling Losses
(a) $O_V = 0.21 \times [R_V - (0.1 \times D_V \times 682 \times 0.001)] m^3$

(a)
$$O_V = 0.21 \times [100 - (0.1 \times D_V \times 0.02 \times 0.001)] \text{ m}^3$$

 $O_V = 0.21 \times [129.6 - (0.1 \times 170 \times 682 \times 0.001)] \text{ m}^3$
 $O_V = 24.8 \text{ m}^3$
(c) $O_C = \frac{100 \times O_V}{R_V} \%$
 $O_C = \frac{100 \times 24.8}{129.6} \%$
 $O_C = 19.1\%$

Step 3: Total Oxygen Concentration in the Laboratory

$$O_T = O_C - O_D$$

 $O_T = 19.1 \% - 0.003\%$
 $O_T = 19.1 \%$

Example 3:

Step 1: Normal Evaporative Losses

(a)
$$N_E = \frac{2 \times 682 \times (D_N \times D_E)}{24 \times 1000} m^3 h^{-1} \frac{24 \times 1000}{24 \times 1000} m^3 h^{-1} \frac{1364 \times (0.36)}{24 \times 1000} m^3 h^{-1} \frac{1364 \times (0.36)}{24000} m^3 h^{-1} \frac{1}{24000} n_E = 0.020 m^3 h^{-1}$$

(b) $A_D = \frac{N_E}{R_V \times R_A} \frac{1}{R_D} = \frac{0.020}{36 \times 6} \frac{1}{36 \times 6} \frac{$

Step 2: Filling Losses

(a)
$$O_V = 0.21 \times [R_V - (0.1 \times D_V \times 682 \times 0.001)] \text{ m}^3$$

 $O_V = 0.21 \times [36 - (0.1 \times 20 \times 682 \times 0.001)] \text{ m}^3$
 $O_V = 7.27 \text{ m}^3$
(d) $O_C = \frac{100 \times O_V}{R_V} \%$
 $O_C = \frac{100 \times 7.27}{36} \%$
 $O_C = 20.2\%$

Step 3: Total Oxygen Concentration in the Laboratory

$$O_T = O_C - O_D$$

 $O_T = 20.2 \% - 0.0020\%$
 $O_T = 20.2 \%$